About jessicaluo

Graduate student in marine biology at the University of Miami

Undergraduate research: Jenna Binstein

Greetings plankton enthusiasts, new and old! My name is Jenna Binstein and I recently graduated from undergrad at the University of Miami. I enjoyed my time there so much though, that I signed on for another year as a graduate student! Part of what made my undergraduate years so fulfilling and worthwhile was my work in the lab with Dr. Cowen, Jessica, and the rest of the ISIIS/plankton team. Before I go into more detail about my work there, let’s take a quick look at how I found my way into the marine sciences.

Jenna Binstein

It all started when I got my SCUBA certification as a freshman in high school. After my first open water dive I was hooked. I knew I had to learn all there was to know about marine science. At first, I thought I wanted to study the “big” stuff: dolphins, sharks, or turtles. I had seen jellyfish on SCUBA dives before, but I always considered them pests. I never thought as I applied and enrolled at UM that I would find such passion in studying some of the smallest organisms in the ocean, and learn just how important and collectively “big” they actually are.

Basically, my journey with plankton started when I met Jessica and Adam and began helping them with their respective dissertation research. I started learning to identify zooplankton, just as you all are learning to do via Plankton Portal! I started getting comfortable with the images from ISIIS, and eventually began to develop my own interest and senior thesis project with mentorship from Jessica. I decided to begin looking more closely at Appendicularians. Very little is known about these guys and their unusual mucous housing. So I spent a long time quantifying Appendiularians by size, classification, and whether or not they were inside a mucous housing when I saw them. The goal was to be able to identify an existing relationship between depth and whether or not an Appendicularian was found in its housing. I briefly looked at other factors as well, such as frontal dynamics, size, and classification and then saw if these related to an Appendicularian being in or out of its house. Although I completed my senior thesis, the work is not over; as there is still so much more I can pull from the data! Yet overall, I learned so much about Appendicularians and their role in the oceans, and I will definitely share as much of that as I can with all of you on some later blog posts relating specifically to the Appendicularian. In the meantime, I hope to continue learning all I can about Appendicularians and other gelatinous zooplankton during my time with the help of ISIIS, Plankton Portal, and UM.

Until my next post, happy jellyfishing everyone ≡≡D

Jenna

Jenna Binstein, B.S.M.A.S., is a student in the Masters of Professional Science program at the Rosenstiel School of Marine and Atmospheric Sciences (RMSAS), University of Miami. You can reach her at jbinstein [at] rsmas.miami.edu.

Advertisements

Fantastic Finds Friday #FFF – Cydippid edition

We are nearing the end of Friday, so apologies that this post is late! Hopefully it will be enjoyable for you weekend warriors! By the way, did you see that we are almost at 200,000 classifications?! I am so impressed by this amazing group of citizen scientists that make Zooniverse projects a success, particularly this one. THANK YOU.

We are going to use FFF to point out some amazing pictures that you guys have identified and called to our attention in the last week+, and also to clarify some confusion on a tricky category.

51d1bd833ae74008a40013bd
http://talk.planktonportal.org/#/subjects/APK00003ui

Cydippid ctenophore – #cydippid 

This is a type of comb jelly, called a cydippid ctenophore. We think that this organism is Hormiphora californiensis or a relative. It has a egg shaped body with two tentacles, which are typically extended (for feeding), but also can be retracted into the sides of its body.

The relative of Hormophora californiensis is Pleurobrachia bachei, the sea gooseberry. Check out the following video of P. bachei feeding on some brine shrimp:

Here is another video of P. bachei from the Vancouver Aquarium:

For every easily classified cydippid ctenophore there is also other cydippids that are more difficult to classify by users. These ctenophores include Mertensia and Haeckelia beehleri, which are also cydippids but have their tentacles withdrawn. See below:

51d1bd993ae74008a400ca6a
http://talk.planktonportal.org/#/subjects/APK0000yb7

This is also a cydippid ctenophore – but it has its tentacles withdrawn.

To add some more complication to the matter, there are also some lobate ctenophores, like the one below, whose young have a cydippid-like phase.

51d1bd903ae74008a4007782
http://talk.planktonportal.org/#/subjects/APK0000kvy

Lobate ctenophore – #lobate 

This is a beautiful shot of an adult lobate ctenophore, most likely the species Ocyropsis maculata. However, their young have this cydippid-like phrase. There has been one paper that published a drawing of the development of Ocyropsis. It was published in 1963. I had to email all around to get a copy, and when I receive it, I see that it’s in Chinese. Fortunately, they had great drawings that helped me.

ocyropsisdev1_chiu1963

ocyropsisdev2_chiu1963
Chiu SY (1963) The metamorphosis of the ctenophore Ocyropsis crystallina from Amoy. Acta Zoologica Sinica 15:10-16

If anyone can translate the Chinese, let us know! But otherwise, just look at the cool pictures. There are a couple different stages of lobate ctenophore development, and the cydippid stage is one of the earliest stages. We definitely see this stage in our images. See below:

51d1bd993ae74008a400c975
http://talk.planktonportal.org/#/subjects/APK0000y4e

Cydippid-phase of young Lobate Ctenophore

Officially, we want you to make this as a #lobate. BUT, we also know that these are incredibly confusing because these ctenophores have tentacles. So, we understand if you get these mixed up. In our data cleanup, we will end up checking the classifications of the small cydippids and lobates to make sure that they are classified correctly. Also, please know that if you do mix these classifications up, we will at least know that it’s a ctenophore! That’s more information than we had previously. So, anything is helpful.

THAT’S ALL FOLKS! Thanks for reading. Remember to tag images you want considered for Fantastic Finds Friday with the hashtag #FFF. And as always, thanks for classifying! We are currently at 191,968 classifications. So very close to 200,000!

The push to 200,000!

Once again, we come on here thanking all of you immensely for your efforts in classification on this blog! We have nearly reached 200,000 classifications!!
We are at (drumroll please) 191,736 classifications!

Will you help us meet 200,000?

Congratulations to Dr. Adam Greer!

A big congratulations to Dr. Adam Greer, who defended his dissertation on Friday. The title of his dissertation is, “Fine-scale distributions of plankton and larval fishes: Implications for predator-prey interactions near coastal oceanographic features”

FirstSlideIn our Ph.D. dissertation defenses, we give a 1-hr talk on our research (imagine trying to cram in 5+ years of work into 1 hour!) and then we have a closed-door session with our Ph.D. committee where we answer questions and ‘defend’ our research.

Adam did fabulously on Friday and successfully defended! He will be finishing the writing this month and then moving to on as a Post-doctoral researcher at the University of Georgia. Congratulations, Dr. Greer!

What’s the goal of this research project?

The underlying objective of this research project is centered on a small-scale front and its associated biological activity. A front is a meeting of two water masses, and oceanic fronts are generally broken up into several broad categories, depending on the physical environment and phenomenon that cause these water masses to converge. Oceanographers have been interested in fronts for a long time, because they tend to be areas of high productivity. The elevated productivity at fronts is a result of the converging water masses physically aggregating many marine organisms.

Small-scale fronts are, as the name suggests, smaller in spatial scale: they tend to occur on the order of tens of kilometers instead of hundreds to thousands of kilometers like some of the other major fronts. Small-scale fronts occur frequently, but have also been harder to describe because they are more ephemeral than large fronts.

samplingsite

Sampling region in the Southern California Bight (SCB)

We set out to study one particular small-scale front in the Southern California Bight (SCB, see map for study region) because it was in an area that has received long-term oceanographic investigation – it is always good to do studies where there is lots of baseline data. We were primarily interested in exploring what biota was out there and seeing if there was biological aggregation at the front.  Indeed there was! We saw a large aggregation of our now favorite jellyfish, Solmaris rhodoloma, at the front and described it in a 2012 research paper. You don’t have to worry about reading it. It basically says what I just told you: we found a lot of Solmaris at this small-scale, salinity-driven front.

Solmaris rhodoloma aggregation

Solmaris rhodoloma aggregation

One of the interesting things about Solmaris is that they are part of a family of medusae that predate exclusively on other gelatinous zooplankton. They have been known to eat arrow worms and doliolids, but now, because of our images, we also think they are eating larvaceans and small siphonophores as well. So finding the large aggregation of Solmaris actually generated another research question for us: what’s going on with the rest of the gelatinous zooplankton at and around this front? What are the main processes driving their distribution? Is predation pressure from Solmaris affecting them in any way?

It turns out that the second question is much harder to answer than you would think. Not knowing exactly what Solmaris is eating, and how long they’ve been accumulating at the front makes it difficult for us to tell if they’re just happening upon a patch of prey or they have already eaten everything around them. One approach is to determine the movements and directions of the organisms, which is why we’re asking you to measure their orientation. We hope that knowing their orientation (and that of their potential prey) can help us model their movement patterns and “age” the Solmaris aggregation, so to speak. Of course, it’s possible that even with this data we will still not be able to determine how long Solmaris has been aggregating at the front. However, this kind of orientation information has never been acquired for jellyfish of this size and at this scale, so any data we gather will be new and interesting!

This is just one of many questions that Plankton Portal can help answer.  The biological data contained within these images can bring us closer to a greater understanding of zooplankton ecology in general.  Understanding the abundance, distribution and biomass (that’s where the size measurements come in) of this extremely understudied group of organisms – the small gelatinous zooplankton – can help us assess their broader impact in the marine food web, contribution to carbon cycling, and even help us learn how to identify hotspots of marine productivity in the future. This is how research grows and develops: it starts from a small, initial question (“hmm, I wonder if there is anything interesting at a small offshore front?”), which leads us to additional questions, and down the road, will hopefully help mankind appreciate and better protect its precious marine resources.

Thank you for your help and participation in Plankton Portal – you are contributing to a more knowledgeable future and hopefully one where we can better care for the sea around us.

100,000! Thank you to our top classifiers

Plankton Portal reached 100,000 classifications on Friday! In honor of our 100,000th classification, we’d like to publicly thank our top classifiers since our launch.

Solmaris rhodoloma, our Plankton Portal mascot

Solmaris rhodoloma, our Plankton Portal mascot

The top ten are (drumroll please):

1. yshish
2. lynb
3. elizabeth
4. Ingolme
5. KarenLK
6. localwormguy
7. cnorvalk
8. charcinders
9. VBear
10. Collodaria

The next ten classifiers are:
Lounalune, darylh69, mlmuniz, shocko61, SandersClan, jim24, Sheepdog, Steve3455, tadaemdg, and csams

A huge THANK YOU to everyone who has helped us reach 100,000 + classifications!

Love,
The Plankton Portal Science Team

Fantastic Finds Fridays: Week 2! #FFF

We are at the end of week 2 and we pulled out some of the best finds from this past week. As a reminder, every Friday we will post a selection of Fantastic Finds. If you think you have found something really great on Plankton Portal then tag #FFF and we will check it out for use on the blog. Thanks for tagging your favorites this week!

51d1bda03ae74008a4010740

Larval fish
http://talk.planktonportal.org/#/subjects/APK00015nq

Larval fish are actually considered part of the plankton, as fish in their early life stages will drift along in the oceanic environment. Because larval fish are relatively poor swimmers, they are under high predation pressure and more than 99% of baby fish that hatch from eggs will not make it! It’s a tough life. You might not know it from this site, but studying larval fish is a major component of our lab. Dr. Cowen has spent his career studying larval fish, their distributions, dispersal and population connectivity. In this particular study, we did not sample very many larval fish so we did not include it as one of the categories. However, we are incredibly interested whenever we see one so definitely tag the fish in the forum when you see any! #Larval #fish

51d1bd943ae74008a4009b1e

Liriope tetraphylla (#Medusae #4tentacles) with Arrow worm
http://talk.planktonportal.org/#/subjects/APK0000q5x

This is one of my favorite pictures from this week because what you see Liriope tetraphylla actually eating the arrow worm! Here one of his tentacles has brought up the arrow worm into the gastric peduncle (that’s the long thin appendage in the middle of the umbrella that looks like a handle). He appears to be holding the arrow worm in place while he eats his dinner. As far as I know, the only scientific study of what Liriope eats is from a paper by Larry Madin in 1988, published in the Bulletin of Marine Science, where he found that Liriope eats larvaceans, crustacean larvae, heteropods and juvenile fish. No one has reported that Liriope also eats arrow worms … until now.

51d1bd823ae74008a4000c10

Sphaeronectes koellikeri – #rocketship #thimble
http://talk.planktonportal.org/#/subjects/APK00002cl

This beautiful creature falls within the broad group of jellyfish-relatives called the Siphonophores. Here you see this animal in a stunning feeding display. Though these guys are small and relatively inconspicuous, other siphonophores can get up to hundreds of feet long, and as a group are considered the deadliest predators in the ocean.  One fun fact: these rocketship siphonophores grow from the base of the stem towards the tail end. So the tail end of the stem is one of the oldest parts of the body. Sometimes you’ll even see small rocketships budding from the tail!

51d1bd833ae74008a4001258

Radiolarian colony – #radiolarian #colony
http://talk.planktonportal.org/#/subjects/APK00003kq

We know that you’ve been frustrated by those small fuzzy round objects that invite classification but really aren’t supposed to be classified. Those are protists, a diverse group of eukaryotic microorganisms. One type of protist is the radiolarian, which are known for their glass-like exoskeleton, or “tests.” They are incredibly important in marine science because their tests are made of silica, which are preserved in marine sediments after they die and sink to the bottom of the ocean, and provide a record for paleo-oceanographic conditions, such as temperature, water circulation, and overall climate.

Radiolarians also form colonies. Colonial radiolarians are interesting because first, little is known about them, despite their abundance in the open ocean, and secondly, they are hosts to symbiotic algae that are modest but significant primary producers in the ocean. It has also been suggested that we are vastly underestimating the abundance of radiolarian colonies. Since primary production (photosynthesis, the conversion of sun energy into carbon) is the basis upon which all ocean life can exist, it’s incredibly important to understand who all the different primary producers are and how many of them are out there!

 

That’s all, folks. Thanks for reading, thanks for classifying, and remember: mark your favorites with #FFF for next week’s Fantastic Finds Friday!

Team introductions

We thought you’d like to know who are the scientists behind this project. So – here are a few introductions.

My name is Jessica Luo, and I am starting my fourth year as a Ph.D student at the University of Miami’s Rosenstiel School of Marine and Atmospheric Sciences. My research is on small gelatinous zooplankton (jellyfish and relatives) around fronts, and their vertical migration patterns. The research from this dataset forms part of my dissertation, so I’m really excited for Plankton Portal and the Zooniverse team. I recently moved from Miami to Newport, Oregon to be part of the new lab at Oregon State University. Here I am on a recent research cruise in the Mediterranean Sea:

Jessica on the Resaerch Vessel Tethys II, off the coast of France

Jessica on the R/V Tethys II this summer in the Northern Mediterranean



Adam Greer is a senior Ph.D student in our lab who’s about to defend soon. His research focuses on thin layers of zooplankton in coastal environments. He studies aggregation and the spatial relationships of organisms using ISIIS. He just got a very nice article published by the Journal of Plankton Research and made the cover! Congrats on all these achievements.

Adam scuba diving in the Caribbean

Adam scuba diving in Belize, 2011



Cedric Guigand, senior research associate in University of Miami and Charles Cousin, ocean engineer and CEO of Bellamare are the designers and developers of ISIIS. Their main contribution is to invent and built the crazy instruments that the scientists (i.e. Bob) come up in their wildest dreams! Not always easy… but always exiting! They also spent quite a bit at time at sea all over the world to help the group collect data and make sure the instruments are working well.

Adam (left) and Cedric (right) on a random friday afternoon in the lab: playing trombone

Adam (left) and Cedric (right) on a random friday afternoon in the lab: playing trombone.

Charles Cousin

Charles Cousin



Ben Grassian is a senior thesis student in our lab. He recently graduated from the University of Miami and his senior thesis was on the temporal and spatial distribution of ctenophores in San Diego. He spent an enormous amount of time identifying plankton images that helped us design the benchmark library we provided you to analyze the Plankton Portal data.

Ben_Grassian

Dorothy Tang is a research technician working on the identification of organisms in ISIIS images. Her everyday life is surrounded by plankton–looking for them, identifying them, and charmed by them. In her words, “ISIIS opens my eyes on plankton (especially zooplankton). As I learned more about different kinds of zooplankton–jellyfish, siphonophore, appendicularians and their houses, ctenophores, larval fish, etc., I appreciate them more.”

Dorothy in the Lab

Dorothy in the Lab



And the head honcho – Bob Cowen is the mastermind behind the whole lab and the one who motivates, guides and keeps us all in line. He dreamed up the concept of ISIIS over a decade ago while trying to catch rare fish larvae with nets in the Caribbean. He is now the Director of Oregon State University‘s Hatfield Marine Science Center – and enjoying life on the west coast.

Bob on a recent cruise in the Mediterranean, examining a plankton net tow

Bob on a recent cruise in the Mediterranean, examining a plankton net tow

So that’s us! You can find Plankton Portal on Facebook, Twitter or Google Plus, or visit our Lab Facebook Page. Tweet us or message us any questions you may have, or even just to say hello!