Fantastic Finds Friday: February 2014

Hey plankton hunters!  This week we are showing off four exceptional zooplankton found by you, our keen-eyed and inquisitive citizen scientists.  We are amazed at how many plankton species have been uncovered on the site and just how capable you all have been at discerning some truly tricky taxa from the varying forms and shapes captured by the ISIIS camera.  We thank all of the citizen scientists for your participation on the Plankton Portal!  These images found by our citizen scientists continue to excite and we are eager to discover what resides in the thousands of images yet to be seen by human eyes!

Annatiara affinis; Anthomedusa — #Medusa #morethanfourtentacles

51d1bee53ae74008a405aea3

This capture of an anthomedusa is definitely a prime example of how the images captured by ISIIS can be equal measures fine-resolution biological data and one-of-a-kind organismal artwork.  This gelatinous organism is baring all for us in this frame and we get a clear view of not only the striations on the exterior of the bell (the exumbrella) unique to this species and the fully extended tentacles, but also the central gastric pouch (stomach) appearing as the dark mass within the bell and the internal network of radial canals where digested food is transported. I think I can also see this critter blushing as ISIIS takes the snapshot!  This medusa shown here is relatively uncommon in the images provided for you from the Southern California Bight, and we couldn’t be happier that our fantastic and dedicated group of citizen scientists spotted this gelatinous beauty.  Annatiara affinis is a hydromedusa like many of the #4tentacles and #morethanfourtentacle medusae found on the site.  The unique (and photogenic) lines appearing along the exterior of the bell were very helpful in pinning down an ID for this critter.  From what we have seen, this seems to be a rare image captured of Annatiara where the tentacles are fully extended from the margin of the bell, and we are extremely grateful that this lovely jelly was so at ease in front of the ISIIS cam.

Shrimp — #Shrimp

51d1bef33ae74008a4061218

This is one of the largest shrimps I have seen on the portal and provides a great side-view of the crustacean anatomy.  The orientation of this shrimp with the abdomen tucked under the carapace (upper shell) and the antenna trailing sharply away from the head indicates that it is moving rapidly towards its posterior (bottom left of image), using a swimming stroke known as the “cardioid escape reaction”—slapping the abdomen shut and quickly propelling the crustacean away from the perceived danger.  This specific behavior played an important role in the field of neuroscience, in fact.  When it was discovered, this behavioral response was the first example of a “command neuron mediated behavior”— meaning a specific behavioral pattern resulting from the stimulation of a single neuron.  I wonder what stimulated this crustacean’s command neuron? Perhaps it is camera shy.

Arrow Worm / Chaetognath — #ArrowWorm

51d1beff3ae74008a4066981

I’m curious if that dark blob may be some out-of-luck plankter soon to be nabbed by this voracious predator.   I am especially fond of these in focus captures of chaetognaths.  The dart-shaped body and the hydrodynamic taper of the paired lateral fins really show off the sleek and elegant body plan of these brutal invertebrate carnivores.  The chaetognath body has a protective outer covering known as a cuticle, a tough but flexible non-mineral layer exterior to the epidermis.  Chaetognaths are notoriously efficient predators and hunt other planktonic organisms using hooked grasping spines that flank the mouth.  A hood arising from the neck region can be drawn over or away from the hunting spines, much like the action of sheathing and unsheathing a blade.  Equipped with an armor of cuticle and sword-like spines these guys are definitely well suited for combat!

Physonect Siphonophore — #Sipho #Corncob

51d1bdbc3ae74008a401fa38

The siphonophores love to put on a good show for us here on the portal and this frame is truly exceptional.  The shadowgraph imaging technique used by ISIIS lends itself to capturing in detail the elaborate gelatinous structures displayed by these colonial organisms.  Siphonophores are comprised of many single animals, or zooids, which are highly specialized and coordinated in function.  The zooids of a physonect siphonophore arise from a long stem at the end of which is a gas-filled float referred to as a pneumatophore.  The pneumatophore is on display in this image here appearing as the dark, oval-shaped appendage on the upper left end of the main “body.”  The portion that resembles a corn on the cob is referred to as the nectosome.  The nectosome is composed of many swimming bells, or nectophores, each one of which is a single medusoid zooid.  These nectophores display remarkable coordination among each other and the selective contraction of these zooids allows for the siphonophore to move and turn in any and all directions.  Physonect siphonophores are predators and rely on long, branching tentacles for prey capture.  The one whipping across the frame here is definitely on the prowl.  Each tentacle arises from a single feeding polyp situated below the nectosome in a region called the siphosome.  You can see the siphosomal region on this specimen as the narrowing, darkly filled feature curling upward from the base of the nectosome.  They sure have a lot of ‘somes’ and ‘phores’ but we forgive their repetitive nomenclature because we are always glad to find some siphonophores.

We hope this has been a fun and informative look at a few of the many tremendous critters captured by ISIIS and found by the citizen scientists.  If you come across an image you think is particularly cool on the portal then tag it with #FFF and we will check it out for use on the blog.  As always, looking forward to the next Fantastic Find Fridays!

Jellyfish blooms, Norway and Periphylla

Today’s post comes from a new blog started by Andrea Bozman from the University of Nordland, Bodø, Norway. She is a Ph.D student studying the Helmet Jellyfish, Periphylla periphylla. From Andrea’s blog, www.smackofscience.com, she weighs in on the question of whether jellyfish blooms are increasing. In Norway and in many other areas of the world, people are worried that menace jellyfish might be eating all the young fish, devastating vital fisheries. And increasing jellyfish blooms only make matters worse. Is this the case? Actually, the jury is still out — some scientists are saying that jellyfish blooms are natural and just a part of a global cycle, while others say that jellyfish are increasing due to human-caused degradation of the marine environment. This kind of debate is healthy in science, and the conversation worth following.

Here chimes in Andrea.

Andrea Bozman from The University of Nordland, Bodø, Norway

Revenge of the blobs

Jellies have made a name for themselves in the news, without much effort on their part. Numerous stories linking jellies with negative events are reported world over. In tropical locations this is normally associated with stingers, those jellies that can prove fatal upon contact. Here in Norway, we are not exposed to such angry jellies, but their less hurtful relatives can have economic consequences for industries such as aquaculture and fisheries. In 2011 an influx of jellies in Kaldfjorden sunk a salmon net cage, resulting in an approximate 30 tonne loss of fish. However, the presence of jellies is not a new problem for Norwegian waters. We have our own contender that is rather happy up here – Periphylla periphylla.

Periphylla periphylla, a coronate jellyfish capable of living at depths of 200 – 2000 m. Photo credit: Erling Svensen/savethehighseas.org

The jelly juxtapose

Interactions between fish and jellyfish are not always a bad thing. Some jellies are known to eat fish, others are eaten by fish, and still others provide protection for young fish. Instead of assuming negative connotations on the easiest target – the soft-bodied blobs floating around in our seas – we need to conduct thorough studies on the systems. The increase in reports of jellies may be a compounded effect of media interest rather than an increase in actual jelly numbers. Jelly blooms are nothing new. Well preserved blooms have been found in the fossil record. That said, a change in the location and numbers of some jellies is a fact. And Periphylla in Norway is a prime example.

Yet like jelly blooms, the Periphylla story is also complex. Periphylla is one of the most globally distributed jellies and has always been in Norway. Why numbers are increasing in some areas is unclear. The occurrences may be new or may be part of a cycle. Periphylla is long lived and it may take years for an individual to reach the adult stage. The recent increased numbers in some fjords may have been years in the making. Our knowledge of jellies needs to grow as jellies are likely both misunderstood and underestimated players in the fjords.

Check out the whole blogpost at: http://smackofscience.com/2013/11/15/the-good-the-bad-and-the-jelly/

Thanks for continuing to help out with Plankton Portal! Help from volunteers like you contribute to our understanding of the life histories, distributions and behavior of jellyfish. This information is crucial to have to better understand how jellyfish blooms happen and whether they are increasing globally.

Fantastic Find Friday: Back to Basics

Welcome to this week’s edition of Fantastic Finds found by our dedicated and keen-eyed community of citizen scientists here on the Plankton Portal.  As the weeks pass we are continually surprised by the sheer number of exciting and unique finds on the site.  There is rarely a dull moment here on the portal and we greatly appreciate our many users for their continued input and insight.  We have selected 5 stellar frames from a large collection of truly exceptional finds.  If you stumble upon an image you think is special select finish, click discuss, and tag it with #FFF for recognition on the Friday posts.  And off we go!

Salp; Ritteriella retracta – #Salp

51d1bef03ae74008a405fdd3

We are out of the gate running this week with this awe-inspiring, in-focus capture of a Salp.  What a lucky guy; most Salps don’t get the 5-minutes of fame they deserve!  It reminds me of some organic, underwater vacuum cleaner, which is not a far stretch given the foraging method these guys employ.  Salps are pelagic (open ocean) Tunicates that pump surrounding water through their tubular bodies, filtering out tasty organic matter with internal feeding structures, which are clearly visible here.  Yum!

We’d like to give a big ‘shout out’ to Elena Guerrero of Instituto de Ciencias Del Mar, Barcelona, Spain for the species-level ID.

Also, many thanks to user Yshish for this one which is perhaps my favorite find thus far on the site.  Since my work focuses on ctenophores, this may be a blasphemous statement.  I hope this assertion acts as incentive for the ctenophores to step up their game!

Pleurobrachia bachei – #Cydippid #Ctenophore

51d1beee3ae74008a405f27a

This species of ctenophore is as classic a morphology as you can find within this phylum.  You can clearly see the eight ctene, or comb rows with the two on either side giving us an exceptional visual of their ciliated, hair-like structure.  These comb rows are used both for feeding and for locomotion.  If you look closely, you can also see the tentacle sheaths running internally towards the center oral canal, or ‘stomodaeum.’  The tentacles are extended here for foraging, but can be retracted into the body via the tentacle sheaths.  This is one of the larger cydippid ctenophores I have seen on the site and is a stellar capture!

 Siphonophore; Family Prayidae – #Rocketship #Thimble #Siphonophore #Behavior

51d1bee33ae74008a405a4db

This capture of a prayine Siphonophore is a truly special find.  It seems ISIIS was at the right place at the right time as we captured this siphonophore in the process of asexually budding individual clonal copies of itself, also known as Zooids.  Siphonophores are colonial organisms composed of many specialized zooids, or single animals that together comprise the colonial animal, referred to as a zoon.  These individual zooids bud off from the stem of the siphonophore, which is the phenomenon on display here!  I am personally very glad that our species cannot reproduce asexually—could you imagine if that bully who teased you in middle school could make multiple clonal copies of him/herself?  I don’t think I would have survived all of those wedgies!

Cestid Ctenophore – #Cestida #Ctenophore

51d1bdb43ae74008a401b229

Yet another really neat capture of the ribbon-like Cestid Ctenophore.  Although it may not appear like the cydippid ctenophore above, they both share many characteristics.  You can see here the comb rows along the top (oral) side of the organism, on the right side of the guy captured in this frame.  Like the cydippid ctenophores, these comb rows are used for both locomotion and foraging.  The stomodaeum, or oral canal is also visible here, seen as the apparent crease along the oral-aboral axis in the mid-section of the organism.  When it comes to locomotion, the Cestid ctenophores have a trick up their sleeve, able to move through the water column via undulation of their body.  This is what we are witnessing in this capture here.  Either that or this guy is dancing for the ISIIS camera.

Post-Flexion Larval Fish – #Fish

51d1bdbb3ae74008a401f9d7

Another really great find of one of the rarest organisms in this data set—fish larva, or ichthyoplankton!  The taxonomic ID for this guy is either an Engraulid (anchovy) or a Clupeid (sardine).  This one here is quite big, and is a post-flexion larval fish.  Larval fish pass through three substages, if they are lucky enough to survive during this extremely vulnerable period: preflexion, flexion, and postflexion.  These stages are in reference to the orientation and flexibility of the notochord, the rigid axial support that predates the formation of the vertebral column developmentally in chordate species.  Pre-flexion larval fish have a notochord that is incapable of movement required for locomotion and foraging.  Larval fish in this preliminary substage rely on a yolk sack provided for them in their early ontogeny.  Flexion, or the development of flexibility of the notochord occurs at roughly the same time the yolk sack is depleted.  This is a ‘critical period’ where the larval fish must find food within a short period of time, or the ichthyoplankton will not survive!  Thus, the temporal and spatial distribution of ichthyoplankton in the water column is a crucial determinant of their survival.  This guy is very lucky for having survived to this stage!  Let’s all give him a round of applause.

We hope this was an informative and fun view into some of the many awesome critters found by ISIIS and our citizen scientists.  Until next time!

FFF special behavior

Hello everyone. We have a special “behavior” Fantastic Finds Friday (FFF) today! These frames were selected from your posts to illustrate the power of the human eye to detect rare and unusual phenomena. The frames selected here may not be the most beautiful you have seen so far, but the story behind them is fascinating and could not be told without the help of our citizen scientists.

Here is great shot of a larvacean (also known as an appendicularian) getting spooked by the movement of ISIIS. Larvaceans are known to escape from their mucous house if threatened by a predator. Unfortunately the house can’t be used again, and they will start secreting a new house once the threat is passed.

51d1bd9b3ae74008a400dcb1

Arrow worms (chaetognath) are voracious predators capable of engulfing prey as big as their own body. In these images, you can see an arrow worm catching a larvacean and the other grasping what appears to be a copepod. Their mouths resemble a crown of spikes ready to impale any unlucky prey. Chaetognaths also prey on fish larvae.

51d1bd993ae74008a400c7d0 51d1bda43ae74008a4012997

These two medusae just snagged a larvacean house. Accident or deliberate attempt to feed on these poor guys? The long trailing tentacles act like a sticky fishing net that retracts to bring in the catch of the day.

51d1bd993ae74008a400c49e 51d1bed43ae74008a40537f6

These Solmaris seem to be reaching for something (one tentacle pointed opposite to the others). Solmaris have been seen feeding on other jellies – even large siphonophores! They swim with their tentacles forward to maximize the chances of catching a prey. they then move the item to their mouth with one tentacle (like an arm almost).

51d1bed43ae74008a4053599 51d1beea3ae74008a405d135 51d1befc3ae74008a40653ad

No, these are really two different frames! Amazing consistency in posture isn’t it? And look at these two tentacles reaching out – sensing their environment? Hoping to encounter a tasty prey item? If we detect enough of these organisms, we could try to investigate at which time or location they behave this way. This could be a really interesting project!

51d1bd853ae74008a400264a 51d1bd903ae74008a4007734

So if you see something interesting like these example or suspect some interaction is at play in one of the frame use the hashtag #behavior. Remember to mark frames you want considered for future Fantastic Finds Friday posts with #FFF. Thanks, and keep up the good work!

Fantastic Find Friday Take 3!

Hey plankton hunters!  Welcome to our 3rd round of Fantastic Find Friday here at Plankton Portal.  There have been so many awesome finds on the site and we picked 5 this week for you to check out.  If you see something really neat on the portal than tag it with #FFF so we can check it out for use on the blog.  Here we go!

Physonect Siphonophore— #Sipho #Corncob

http://talk.planktonportal.org/#/subjects/APK0000iu4

51d1bd8e3ae74008a4006d0e

This is a stunning capture of a physonect siphonophore who seems to be waving hello to ISIIS as she passes by.  Like all siphonophores, this guy here is a colonial organism comprised of many individual animals or ‘zooids.’  Each zooid is specialized and distinct, but work together so closely that they more resemble a single organism than a colony of animals.  On display here are the branching tentacles used for foraging and the swimming bells that resemble a corncob.  This one is a stunner!

Lobate Ctenophore — #Lobate

http://talk.planktonportal.org/#/subjects/APK0000l30

51d1bd903ae74008a4007882

This is a really neat capture of a lobate ctenophore (Ocyropsis maculata), showing off the feature that gives this guy his name.  In this image you can see clearly the internal structure and the striated texture of his muscular, gelatinous body.  Lobate ctenophores swim lobes forwards by beating the ciliated comb rows situated on the opposite (aboral) end.  The one depicted here would be swimming towards us and to the left.  I wonder if larvacean is on the menu?

Chaetognath — #Arrowworm

http://talk.planktonportal.org/#/subjects/APK0000hpr

51d1bd8d3ae74008a4006758

Looks like an arrow shot by some undersea archer, right?  Arrow worms, or chaetognaths, are carnivorous marine worms belonging to the Phylum Chaetognatha.  They are notoriously ferocious predators that hunt other plankton with the help of hooked ‘grasping spines’ that flank the mouth.  Chaetognaths have fins for propulsion and steering—you can see all of them really well in this capture!  While these fins superficially resemble those of a fish, they are not related evolutionary and are structurally very different.

Calycophoran Siphonophore — #Rocketship #Triangle

http://talk.planktonportal.org/#/subjects/APK0000k4m

51d1bd903ae74008a40073a5

I bet NASA would get a lot more funding if they built space shuttles that looked like this!  This beautiful capture of a siphonophore really looks to me like some sci-fi monster a (horrified) astronomer might see in a telescope!  Don’t worry though, this guy is just a couple of cm’s long and probably couldn’t hurt you if he tried.  Just like the physonect siphonophore above, this guy is a colonial organism and would therefore be more appropriately referred to as guys.  The tail, or stem, on display here contains two developmental stages of siphonophore simultaneously—both the medusa and polyp stages.  Unlike most cnidarians that alternate between these stages generationally, this guy chooses to have them coexist within the same colony.  If you look closely you can see them bickering over who is the prettiest!

Calanoid Copepod — #Copepod

http://talk.planktonportal.org/#/subjects/APK00005l6

51d1bd843ae74008a4001c98

This copepod is making a heart with his antennae! Do you think he might be in love?  There is some 13,000 species of copepod in the world and they are a crucial component of plankton communities and global ecology in general.  It has been suggested that copepods may comprise the largest animal biomass on the planet! Many species of marine life, large and small, rely on these guys as their main food source, including whales and seabirds.  Looks like this guy here is a lover not a fighter!

Looking forward to next time !

What’s the goal of this research project?

The underlying objective of this research project is centered on a small-scale front and its associated biological activity. A front is a meeting of two water masses, and oceanic fronts are generally broken up into several broad categories, depending on the physical environment and phenomenon that cause these water masses to converge. Oceanographers have been interested in fronts for a long time, because they tend to be areas of high productivity. The elevated productivity at fronts is a result of the converging water masses physically aggregating many marine organisms.

Small-scale fronts are, as the name suggests, smaller in spatial scale: they tend to occur on the order of tens of kilometers instead of hundreds to thousands of kilometers like some of the other major fronts. Small-scale fronts occur frequently, but have also been harder to describe because they are more ephemeral than large fronts.

samplingsite

Sampling region in the Southern California Bight (SCB)

We set out to study one particular small-scale front in the Southern California Bight (SCB, see map for study region) because it was in an area that has received long-term oceanographic investigation – it is always good to do studies where there is lots of baseline data. We were primarily interested in exploring what biota was out there and seeing if there was biological aggregation at the front.  Indeed there was! We saw a large aggregation of our now favorite jellyfish, Solmaris rhodoloma, at the front and described it in a 2012 research paper. You don’t have to worry about reading it. It basically says what I just told you: we found a lot of Solmaris at this small-scale, salinity-driven front.

Solmaris rhodoloma aggregation

Solmaris rhodoloma aggregation

One of the interesting things about Solmaris is that they are part of a family of medusae that predate exclusively on other gelatinous zooplankton. They have been known to eat arrow worms and doliolids, but now, because of our images, we also think they are eating larvaceans and small siphonophores as well. So finding the large aggregation of Solmaris actually generated another research question for us: what’s going on with the rest of the gelatinous zooplankton at and around this front? What are the main processes driving their distribution? Is predation pressure from Solmaris affecting them in any way?

It turns out that the second question is much harder to answer than you would think. Not knowing exactly what Solmaris is eating, and how long they’ve been accumulating at the front makes it difficult for us to tell if they’re just happening upon a patch of prey or they have already eaten everything around them. One approach is to determine the movements and directions of the organisms, which is why we’re asking you to measure their orientation. We hope that knowing their orientation (and that of their potential prey) can help us model their movement patterns and “age” the Solmaris aggregation, so to speak. Of course, it’s possible that even with this data we will still not be able to determine how long Solmaris has been aggregating at the front. However, this kind of orientation information has never been acquired for jellyfish of this size and at this scale, so any data we gather will be new and interesting!

This is just one of many questions that Plankton Portal can help answer.  The biological data contained within these images can bring us closer to a greater understanding of zooplankton ecology in general.  Understanding the abundance, distribution and biomass (that’s where the size measurements come in) of this extremely understudied group of organisms – the small gelatinous zooplankton – can help us assess their broader impact in the marine food web, contribution to carbon cycling, and even help us learn how to identify hotspots of marine productivity in the future. This is how research grows and develops: it starts from a small, initial question (“hmm, I wonder if there is anything interesting at a small offshore front?”), which leads us to additional questions, and down the road, will hopefully help mankind appreciate and better protect its precious marine resources.

Thank you for your help and participation in Plankton Portal – you are contributing to a more knowledgeable future and hopefully one where we can better care for the sea around us.

Why use images to study plankton?

Although ocean science has made many great advances, many biological processes are still poorly understood. In the sciences generally, a common theme is using new technology to examine patterns on smaller, more fundamental scales (e.g., DNA technology in biology, nanoparticle physics), with the goal of revealing underlying mechanisms. Plankton imaging is a method to examine patterns of organisms on a smaller scale, giving insight into how these organisms live and interact with each other. In addition, many planktonic animals are fragile and easily destroyed by plankton nets: the traditional tool to study plankton distributions. These plankton nets also suffer from the problem of having to sample over large portions of the water column, so an oceanographer might use a single net to capture copepods and shrimps and assume that these organisms co-occur if they appear in the same sample. However, it is entirely possible that the organisms are confined to discrete thin layers that do not overlap spatially. An imaging system can distinguish between these two scenarios, while a plankton net cannot. Images also provide information about the natural orientation of plankton, which can allow us to make predictions about their movement and feeding strategies.

 The bongo net is a traditional tool of biological oceanographers but is biased toward plankton with a hard exoskeleton (crustaceans) (Image source: NOAA Cruise DE 10-09 Report).

The bongo net is a traditional tool of biological oceanographers but is biased toward plankton with a hard exoskeleton (crustaceans) (Image source: NOAA Cruise DE 10-09 Report).

When we think about the future of our planet, climate change and predicting its effects are of great concern. In order to make meaningful predictions about a system, you need to create a mathematical model. One of the most important aspects of any model is the initial conditions and baseline variability. For many planktonic animals, especially jellyfish, we do not know their abundance, variation, or how they interact within the oceanic food web, which is all crucial information for predicting the future of our oceans under climate change conditions. Using an imaging system like ISIIS can lead to better population estimates of many different plankton types, and this information can complement many types of oceanographic studies. Fine-scale data can improve estimates of feeding and encounter rates for planktonic organisms, which is critical to our understanding of the oceanic food web.

A colony of salps such as this one would be destroyed or broken up into individuals if sampled with a net system. The in situ image in this situation gives information on the asexual budding of this fast reproducing phytoplankton grazer.

A colony of salps such as this one would be destroyed or broken up into individuals if sampled with a net system. The in situ image in this situation gives information on the asexual budding of this fast reproducing phytoplankton grazer.

When compared to plankton samples preserved in ethanol or formalin, image data provide distinct advantages in data processing and collaboration. For one, oceanographers can tackle age old questions like what are the biological and physical drivers of plankton aggregations and dispersal, and how do plankton aggregations impact the populations of wild fish, a multi-billion dollar global industry? The ‘digitization’ of biological data improves the ability to share data, fostering collaboration among ocean scientists with differing expertise. Having these images available on the internet (through a database server) increases the accessibility of biological oceanography to students, teachers, and the public. It is our hope to one day have these images available to the public, so everyone can gain an appreciation for the diversity of life in the ocean and perhaps use them to supplement science classes. The Zooniverse and Citizen Science is a great start to achieving these goals of making ocean science more “open access,” and we are so appreciative of your help!