Fantastic Find Fridays: Feb 2016

Hey plankton hunters!  We are bringing you another round of Fantastic Finds from the Plankton Portal.  Citizen scientists continue to reel in new captures of some truly awesome plankton.  Here are just a few neat finds, ID’s, and novel taxa:

Pteropod mollusk

pteropod

Did you ever learn about marine butterflies in grade-school?  Well good, because there is no such thing as a marine butterfly.  This elegant-looking critter is a pteropod, a type of gastropod mollusk—in other words, a slug!  These mollusks are highly adapted for life in the water-column, as you can see from the butterfly-like wings, (or “parapodia” to a malacologist).  The pteropod wings are actually a highly-modified molluskan foot, i.e. the muscular and slime-secreting mass that slugs glide on.  Evolution really did these slugs a favor, as I do not think anyone could say “ewww!” to such a beautiful animal.

Calycophoran Siphonophore

caly_sipho

Now this is a fantastic image.  A close-up, finely-detailed capture of the head (nectosome) portion of a calycophoran siphonophore—so aptly referred to as a “rocket-ship sipho” here on the Plankton Portal.  The two siphon-like features propelling this colonial critter are very apparent in this image.  Maybe, in truth, siphon-ophore is a pretty apt name for this plankter as well.

Ctenophore: Thalassocalyce inconstans

thalass

Thalassocalyce inconstans is a predatory species of ctenophore, captured feeding in this frame.  The body of the ctenophore is contracted and engorged about the anteroposterior (vertical) axis, giving it the appearance of an inflated, heart-shaped balloon.  Within the fragile and transparent body, you can see the 8 condensed comb rows captured as an array of ragged segments crowning the aboral end.  Fine mesenterial canals also appear as contoured markings that line the engorged body. Ctenophores are tactile predators, meaning all predatory behavior is triggered by physical, non-visual stimulus.  Something in the water column bumped into this Thalasso and got it all riled up, providing ISIIS a great opportunity for this detailed capture of foraging behavior.  If we had a hydrophone for this deployment, I am fairly certain a satisfied lip-smacking would be recorded in a few seconds.

Copepods: Families Eucalanidae and Metridinidae. 

copepods

Copepods are abundant in these ISIIS data, and it is easy to forget what a broad diversity of these important crustaceans are classified on the site.  Here we have two broadly identifiable PP copepods for sample.  The image on the left shows a copepod belonging to the family Eucalinidae: it has a narrow, torpedo-shaped body and the anterior end of the head forms a pointed-triangle.  We think this critter might be a Rhincalanus spp.—if you look close you might be able to make out a small rostrum-like appendage extending forward and tucked down from the head, as well as what may be lateral spination at the end of each mid-body segment (prosome).  This guy’s cruising, antennas spread out and scanning the surroundings.  On the right, we have a copepod belonging to the family Metridinidae, perfectly poised for the ISIIS cam.  How do we guess this ID?  At the end of this copepods lengthy tail (urosome), look closely at the paired fin-like feature (ferka).   Along the outer edge, right before the separation of the individual ferka, can you make out a small, skirt-like protrusion?  If so, just tell your buddies: “hmm, check out that lengthy urosome and ferka segmentation; it must be a Metrinidae species,” and blamo—you are a crustacean taxonomist!

Anthomedusae: Leukartia spp.

anthomed

At first glance, you might be thinking “is this medusae sticking its tongue out at me?” Or maybe it is sporting a ten-gallon hat?  While I couldn’t blame you for such outlandish assertions (I mean, who would write such silly things?), this odd anthomedusae is readily identified to genus by the conical appendage extending from the bell (“apical process”) and causing much confusion on the Plankton Portal.  In this image we get a great view of many internal and external features of this Leukartia sp., including a crenulated (ragged) bell margin, a tall mouth (“manubrium”) in the center of the bell, and many long tentacles projected both downwards and in front of the bell.

Larvacean and mucous house

larvacean

We find a good deal of larvaceans on the site, but this capture is a real beauty.  Larvaceans are gelatinous plankton that filter-feed on detritus in the water column.  You see the critter poking its head out, like the cap on a rolled-up toothpaste tube?  That’s the larvacean, curled up in preparation to pump surrounding detritus through its elaborate mesh-like mucous house.  For a critter that takes up residency in its own secretion, this guy is pretty adorable!

Physonect Siphonophore

sipho_forage

Now this is quite the fantastic find!  Here we are looking at a large siphonophore projecting numerous tentacles across the frame.  It is all-hands-on-deck for this colonial jelly, as it is putting on a mighty foraging display for us.  The big guy is hungry—watch out, ISIIS.

There have been way too many great images to fit in this small serving of photogenic plankton.  We look forward to serving up more fantastic finds in the future.  Keep exploring, plankton hunters!

Advertisements

Fantastic Finds Friday: February 2014

Hey plankton hunters!  This week we are showing off four exceptional zooplankton found by you, our keen-eyed and inquisitive citizen scientists.  We are amazed at how many plankton species have been uncovered on the site and just how capable you all have been at discerning some truly tricky taxa from the varying forms and shapes captured by the ISIIS camera.  We thank all of the citizen scientists for your participation on the Plankton Portal!  These images found by our citizen scientists continue to excite and we are eager to discover what resides in the thousands of images yet to be seen by human eyes!

Annatiara affinis; Anthomedusa — #Medusa #morethanfourtentacles

51d1bee53ae74008a405aea3

This capture of an anthomedusa is definitely a prime example of how the images captured by ISIIS can be equal measures fine-resolution biological data and one-of-a-kind organismal artwork.  This gelatinous organism is baring all for us in this frame and we get a clear view of not only the striations on the exterior of the bell (the exumbrella) unique to this species and the fully extended tentacles, but also the central gastric pouch (stomach) appearing as the dark mass within the bell and the internal network of radial canals where digested food is transported. I think I can also see this critter blushing as ISIIS takes the snapshot!  This medusa shown here is relatively uncommon in the images provided for you from the Southern California Bight, and we couldn’t be happier that our fantastic and dedicated group of citizen scientists spotted this gelatinous beauty.  Annatiara affinis is a hydromedusa like many of the #4tentacles and #morethanfourtentacle medusae found on the site.  The unique (and photogenic) lines appearing along the exterior of the bell were very helpful in pinning down an ID for this critter.  From what we have seen, this seems to be a rare image captured of Annatiara where the tentacles are fully extended from the margin of the bell, and we are extremely grateful that this lovely jelly was so at ease in front of the ISIIS cam.

Shrimp — #Shrimp

51d1bef33ae74008a4061218

This is one of the largest shrimps I have seen on the portal and provides a great side-view of the crustacean anatomy.  The orientation of this shrimp with the abdomen tucked under the carapace (upper shell) and the antenna trailing sharply away from the head indicates that it is moving rapidly towards its posterior (bottom left of image), using a swimming stroke known as the “cardioid escape reaction”—slapping the abdomen shut and quickly propelling the crustacean away from the perceived danger.  This specific behavior played an important role in the field of neuroscience, in fact.  When it was discovered, this behavioral response was the first example of a “command neuron mediated behavior”— meaning a specific behavioral pattern resulting from the stimulation of a single neuron.  I wonder what stimulated this crustacean’s command neuron? Perhaps it is camera shy.

Arrow Worm / Chaetognath — #ArrowWorm

51d1beff3ae74008a4066981

I’m curious if that dark blob may be some out-of-luck plankter soon to be nabbed by this voracious predator.   I am especially fond of these in focus captures of chaetognaths.  The dart-shaped body and the hydrodynamic taper of the paired lateral fins really show off the sleek and elegant body plan of these brutal invertebrate carnivores.  The chaetognath body has a protective outer covering known as a cuticle, a tough but flexible non-mineral layer exterior to the epidermis.  Chaetognaths are notoriously efficient predators and hunt other planktonic organisms using hooked grasping spines that flank the mouth.  A hood arising from the neck region can be drawn over or away from the hunting spines, much like the action of sheathing and unsheathing a blade.  Equipped with an armor of cuticle and sword-like spines these guys are definitely well suited for combat!

Physonect Siphonophore — #Sipho #Corncob

51d1bdbc3ae74008a401fa38

The siphonophores love to put on a good show for us here on the portal and this frame is truly exceptional.  The shadowgraph imaging technique used by ISIIS lends itself to capturing in detail the elaborate gelatinous structures displayed by these colonial organisms.  Siphonophores are comprised of many single animals, or zooids, which are highly specialized and coordinated in function.  The zooids of a physonect siphonophore arise from a long stem at the end of which is a gas-filled float referred to as a pneumatophore.  The pneumatophore is on display in this image here appearing as the dark, oval-shaped appendage on the upper left end of the main “body.”  The portion that resembles a corn on the cob is referred to as the nectosome.  The nectosome is composed of many swimming bells, or nectophores, each one of which is a single medusoid zooid.  These nectophores display remarkable coordination among each other and the selective contraction of these zooids allows for the siphonophore to move and turn in any and all directions.  Physonect siphonophores are predators and rely on long, branching tentacles for prey capture.  The one whipping across the frame here is definitely on the prowl.  Each tentacle arises from a single feeding polyp situated below the nectosome in a region called the siphosome.  You can see the siphosomal region on this specimen as the narrowing, darkly filled feature curling upward from the base of the nectosome.  They sure have a lot of ‘somes’ and ‘phores’ but we forgive their repetitive nomenclature because we are always glad to find some siphonophores.

We hope this has been a fun and informative look at a few of the many tremendous critters captured by ISIIS and found by the citizen scientists.  If you come across an image you think is particularly cool on the portal then tag it with #FFF and we will check it out for use on the blog.  As always, looking forward to the next Fantastic Find Fridays!

From the citizen scientists: #FFF

This week, we asked one of our top volunteers, Zuzana, a very lovely lady from the Czech Republic, to pick her favorite images for a special Fantastic Finds Friday (FFF) post. She went way above and beyond — did research on her own, wrote up information and background — and we are very pleased to present to you this week’s #FFF post.


Hello everyone. My name is Zuzana, also known as the user Yshish. I was asked by Jessica of the scientist team to put together my favorite pictures from this amazing Plankton Portal and write a short FFF post about them. So here they are:

*The first of my most favorite finds for the last week is definitely this beauty – Aegina citrea.

51d1beec3ae74008a405df19-2

[http://talk.planktonportal.org/#/subjects/APK0006f6z]

This image of Aegina citrea was captured at a depth of 43.42 m and at temperature of 13.55°C.

Aegina citrea

Aegina is one of the jellyfish belonging to the Narcomedusae Order, like its more familiar relative Solmaris.

Members of this order do not normally have a polyp stage. The medusa has a dome-shaped bell with thin sides. The tentacles are attached above the lobed margin of the bell with a gastric pouch typically found above each. There are no bulbs on the tentacles and no radial canals. Narcomedusa are mostly inhabitants of the open ocean and deep waters.

A. citrea is a very rare species in the Plankton Portal images but if you were lucky to get an image with it, mark it as a 4tentacles medusa and start a discussion with using #Aegina tag.

An additional note: Narcomedusa ‘babies’ are very interesting, and act as parasites on other jellies after exiting the mother! Check out this link:

CreatureCast – Narcomedusae from Casey Dunn.

* The second find I chose for this post is my favorite species: ‘Thalasso’ – Thalassocalyce inconstans.

ysh_thalasso

This is a compilation of three separate Plankton Portal images. The Thalasso on the top right was caught while feeding! You can see him opening his ‘mouth’ widely to catch something tasty in the water!

Thalassocalyce inconstans, which we have nicknamed ‘thalasso’ on the Portal, belongs to the phylum Ctenophora – the comb jellies. The Order Thalassocalycida contains only one known species first described in 1978 [Madin and Harbison 1978]. They are closely related to the other ctenophore Orders such as Lobata, Cydippida and Cestidae.

They have an extremely fragile body that can reach 15 cm in width and is shortened in the oral-aboral direction. Thalassocalyce have short comb-rows on the surface furthest from the mouth, originating from near the aboral pole. They capture prey by movements of the bell as you can see in the pictures.

To me they look like an opened umbrella with a beautiful distinct linear drawing engraved on it. Their look is simply beautiful!

Also I can’t forget to mention that I’m fascinated by their bioluminescent abilities. The wavelength of the emitted light from Thalassocalyce is 491 nm (SHD Haddock & JF Case 1999).

* The third fantastic find is this beautiful ‘Corncob Sipho’ – Physonect siphonophore – Forskalia genus.

51d1bdbb3ae74008a401f2ed[http://talk.planktonportal.org/#/subjects/APK00029a8]

Physonect siphonophore

The Siphonophores are an order of the Hydrozoa, a class of marine invertebrates belonging to the phylum Cnidaria which include coral and ‘jellyfish.’ Although a siphonophore appears to be a single organism, each specimen is actually a colony composed of many individual animals. Most colonies are long, thin, transparent organisms that float in the open ocean.

All of the zooids of a physonect colony are arranged on a long stem. This stem has a gas filled float known as a pneumatophore at one end. That’s the funny ‘nose’ we are used to seeing and are typical of the Physonectae family of siphonophores.

Just behind the pneumatophore are the nectophores. These are powerful medusae specialized for moving the colony through the water. They contract in coordination, propelling the entire colony forward, backwards, and in turns. The region of the colony containing the nectophores is called the nectosome.

Just behind the nectosome is the siphosome, which has all of the remaining zooids of the colony. These include feeding polyps capture food with their single, long tentacle, providing nourishment for the entire colony. [http://www.siphonophores.org/SiphPlan.php]
Siphonophores catch prey by putting out their long tentacles and waiting for something to bump into them.

Here is a nice schematic of a physonect siphonophore which could help you understand these awesome creatures:

Physonect siphonophore diagram – Casey Dunn

* My fourth pick is another Siphonophore, this fascinating ‘Thimble Rocket-ship’ – one of the Sphaeronectes genera captured here in a stunning feeding display.

51d1bed73ae74008a4054c87

[http://talk.planktonportal.org/#/subjects/APK0005o03]

You can see that he’s able to cover all the space around himself with his branching tail. It looks almost like a spiderweb to me. In this position he’s waiting for other plankton swimming around to catch and eat.

As I mentioned above, Sphaeronectes is a genus of the Siphonophorae order.

Most siphonophores capture their prey by trapping it with special side branches (termed tentilla) which originate from the tentacle of each gastrozooid. During feeding, the tentilla and the tentacles are extended into the water to form a large transparent net. The prey is first ensnared by the terminal filament and its entangling cnidae (stinging cells). The terminal filament then contracts, bringing the prey into the cnidoband, which contains many stinging cells. (Mackie and Marx 1988; Mackie 1999). [Siphonophora (Cnidaria: Hydrozoa) of Canadian Pacific Waters. Gillian M. Mapstone,Mary N. Arai]

* My final favorite find is this fish – probably a Clupeid (Herring)

51d1be4b3ae74008a403ec4f
[http://talk.planktonportal.org/#/subjects/APK0004ajk]

Clupeidae is the family of the herrings, shads, sardines, hilsa and menhadens. It includes many of the most important food fishes in the world. Clupeids typically feed on plankton, and range from 2 to 75 centimetres in length. After hatching, the larvae are planktonic and live among other plankton until they metamorphose and grow into adults. The adults typically live in large shoals in the coastal oceans.

The larvae are 5 to 6 millimetres long at hatching and have a small yolk sac for nourishment that is absorbed by the time the larva reaches 10 millimetres. Only the eyes are well pigmented while it is a larva. The rest of the body is nearly transparent, virtually invisible under water and in natural lighting conditions.

The larvae are very slender and can easily be distinguished from all other young fish of their range by the location of the vent, which lies close to the base of the tail and is an opening for excretion of eggs and sperm. But distinguishing clupeids from other types of larval fish at this stage requires expertise and close examination. ISIIS images are of a high enough resolution to allow experts to determine the taxa of larval fish captured in the data!


I hope the article wasn’t too boring for you and that you have enjoyed reading it as much as I’ve enjoyed writing it. And do not forget, if you think you’ve found something really neat on the Portal use hashtag #FFF in the discussion boards. I can’t wait to see what else will be found next! Big thanks to Ben Grassian for the consultations!

-Zuzana

20131130-055913.jpg

Fantastic Find Friday: Back to Basics

Welcome to this week’s edition of Fantastic Finds found by our dedicated and keen-eyed community of citizen scientists here on the Plankton Portal.  As the weeks pass we are continually surprised by the sheer number of exciting and unique finds on the site.  There is rarely a dull moment here on the portal and we greatly appreciate our many users for their continued input and insight.  We have selected 5 stellar frames from a large collection of truly exceptional finds.  If you stumble upon an image you think is special select finish, click discuss, and tag it with #FFF for recognition on the Friday posts.  And off we go!

Salp; Ritteriella retracta – #Salp

51d1bef03ae74008a405fdd3

We are out of the gate running this week with this awe-inspiring, in-focus capture of a Salp.  What a lucky guy; most Salps don’t get the 5-minutes of fame they deserve!  It reminds me of some organic, underwater vacuum cleaner, which is not a far stretch given the foraging method these guys employ.  Salps are pelagic (open ocean) Tunicates that pump surrounding water through their tubular bodies, filtering out tasty organic matter with internal feeding structures, which are clearly visible here.  Yum!

We’d like to give a big ‘shout out’ to Elena Guerrero of Instituto de Ciencias Del Mar, Barcelona, Spain for the species-level ID.

Also, many thanks to user Yshish for this one which is perhaps my favorite find thus far on the site.  Since my work focuses on ctenophores, this may be a blasphemous statement.  I hope this assertion acts as incentive for the ctenophores to step up their game!

Pleurobrachia bachei – #Cydippid #Ctenophore

51d1beee3ae74008a405f27a

This species of ctenophore is as classic a morphology as you can find within this phylum.  You can clearly see the eight ctene, or comb rows with the two on either side giving us an exceptional visual of their ciliated, hair-like structure.  These comb rows are used both for feeding and for locomotion.  If you look closely, you can also see the tentacle sheaths running internally towards the center oral canal, or ‘stomodaeum.’  The tentacles are extended here for foraging, but can be retracted into the body via the tentacle sheaths.  This is one of the larger cydippid ctenophores I have seen on the site and is a stellar capture!

 Siphonophore; Family Prayidae – #Rocketship #Thimble #Siphonophore #Behavior

51d1bee33ae74008a405a4db

This capture of a prayine Siphonophore is a truly special find.  It seems ISIIS was at the right place at the right time as we captured this siphonophore in the process of asexually budding individual clonal copies of itself, also known as Zooids.  Siphonophores are colonial organisms composed of many specialized zooids, or single animals that together comprise the colonial animal, referred to as a zoon.  These individual zooids bud off from the stem of the siphonophore, which is the phenomenon on display here!  I am personally very glad that our species cannot reproduce asexually—could you imagine if that bully who teased you in middle school could make multiple clonal copies of him/herself?  I don’t think I would have survived all of those wedgies!

Cestid Ctenophore – #Cestida #Ctenophore

51d1bdb43ae74008a401b229

Yet another really neat capture of the ribbon-like Cestid Ctenophore.  Although it may not appear like the cydippid ctenophore above, they both share many characteristics.  You can see here the comb rows along the top (oral) side of the organism, on the right side of the guy captured in this frame.  Like the cydippid ctenophores, these comb rows are used for both locomotion and foraging.  The stomodaeum, or oral canal is also visible here, seen as the apparent crease along the oral-aboral axis in the mid-section of the organism.  When it comes to locomotion, the Cestid ctenophores have a trick up their sleeve, able to move through the water column via undulation of their body.  This is what we are witnessing in this capture here.  Either that or this guy is dancing for the ISIIS camera.

Post-Flexion Larval Fish – #Fish

51d1bdbb3ae74008a401f9d7

Another really great find of one of the rarest organisms in this data set—fish larva, or ichthyoplankton!  The taxonomic ID for this guy is either an Engraulid (anchovy) or a Clupeid (sardine).  This one here is quite big, and is a post-flexion larval fish.  Larval fish pass through three substages, if they are lucky enough to survive during this extremely vulnerable period: preflexion, flexion, and postflexion.  These stages are in reference to the orientation and flexibility of the notochord, the rigid axial support that predates the formation of the vertebral column developmentally in chordate species.  Pre-flexion larval fish have a notochord that is incapable of movement required for locomotion and foraging.  Larval fish in this preliminary substage rely on a yolk sack provided for them in their early ontogeny.  Flexion, or the development of flexibility of the notochord occurs at roughly the same time the yolk sack is depleted.  This is a ‘critical period’ where the larval fish must find food within a short period of time, or the ichthyoplankton will not survive!  Thus, the temporal and spatial distribution of ichthyoplankton in the water column is a crucial determinant of their survival.  This guy is very lucky for having survived to this stage!  Let’s all give him a round of applause.

We hope this was an informative and fun view into some of the many awesome critters found by ISIIS and our citizen scientists.  Until next time!

Fantastic Finds Friday #FFF – Cydippid edition

We are nearing the end of Friday, so apologies that this post is late! Hopefully it will be enjoyable for you weekend warriors! By the way, did you see that we are almost at 200,000 classifications?! I am so impressed by this amazing group of citizen scientists that make Zooniverse projects a success, particularly this one. THANK YOU.

We are going to use FFF to point out some amazing pictures that you guys have identified and called to our attention in the last week+, and also to clarify some confusion on a tricky category.

51d1bd833ae74008a40013bd
http://talk.planktonportal.org/#/subjects/APK00003ui

Cydippid ctenophore – #cydippid 

This is a type of comb jelly, called a cydippid ctenophore. We think that this organism is Hormiphora californiensis or a relative. It has a egg shaped body with two tentacles, which are typically extended (for feeding), but also can be retracted into the sides of its body.

The relative of Hormophora californiensis is Pleurobrachia bachei, the sea gooseberry. Check out the following video of P. bachei feeding on some brine shrimp:

Here is another video of P. bachei from the Vancouver Aquarium:

For every easily classified cydippid ctenophore there is also other cydippids that are more difficult to classify by users. These ctenophores include Mertensia and Haeckelia beehleri, which are also cydippids but have their tentacles withdrawn. See below:

51d1bd993ae74008a400ca6a
http://talk.planktonportal.org/#/subjects/APK0000yb7

This is also a cydippid ctenophore – but it has its tentacles withdrawn.

To add some more complication to the matter, there are also some lobate ctenophores, like the one below, whose young have a cydippid-like phase.

51d1bd903ae74008a4007782
http://talk.planktonportal.org/#/subjects/APK0000kvy

Lobate ctenophore – #lobate 

This is a beautiful shot of an adult lobate ctenophore, most likely the species Ocyropsis maculata. However, their young have this cydippid-like phrase. There has been one paper that published a drawing of the development of Ocyropsis. It was published in 1963. I had to email all around to get a copy, and when I receive it, I see that it’s in Chinese. Fortunately, they had great drawings that helped me.

ocyropsisdev1_chiu1963

ocyropsisdev2_chiu1963
Chiu SY (1963) The metamorphosis of the ctenophore Ocyropsis crystallina from Amoy. Acta Zoologica Sinica 15:10-16

If anyone can translate the Chinese, let us know! But otherwise, just look at the cool pictures. There are a couple different stages of lobate ctenophore development, and the cydippid stage is one of the earliest stages. We definitely see this stage in our images. See below:

51d1bd993ae74008a400c975
http://talk.planktonportal.org/#/subjects/APK0000y4e

Cydippid-phase of young Lobate Ctenophore

Officially, we want you to make this as a #lobate. BUT, we also know that these are incredibly confusing because these ctenophores have tentacles. So, we understand if you get these mixed up. In our data cleanup, we will end up checking the classifications of the small cydippids and lobates to make sure that they are classified correctly. Also, please know that if you do mix these classifications up, we will at least know that it’s a ctenophore! That’s more information than we had previously. So, anything is helpful.

THAT’S ALL FOLKS! Thanks for reading. Remember to tag images you want considered for Fantastic Finds Friday with the hashtag #FFF. And as always, thanks for classifying! We are currently at 191,968 classifications. So very close to 200,000!

Fantastic Find Friday Take 3!

Hey plankton hunters!  Welcome to our 3rd round of Fantastic Find Friday here at Plankton Portal.  There have been so many awesome finds on the site and we picked 5 this week for you to check out.  If you see something really neat on the portal than tag it with #FFF so we can check it out for use on the blog.  Here we go!

Physonect Siphonophore— #Sipho #Corncob

http://talk.planktonportal.org/#/subjects/APK0000iu4

51d1bd8e3ae74008a4006d0e

This is a stunning capture of a physonect siphonophore who seems to be waving hello to ISIIS as she passes by.  Like all siphonophores, this guy here is a colonial organism comprised of many individual animals or ‘zooids.’  Each zooid is specialized and distinct, but work together so closely that they more resemble a single organism than a colony of animals.  On display here are the branching tentacles used for foraging and the swimming bells that resemble a corncob.  This one is a stunner!

Lobate Ctenophore — #Lobate

http://talk.planktonportal.org/#/subjects/APK0000l30

51d1bd903ae74008a4007882

This is a really neat capture of a lobate ctenophore (Ocyropsis maculata), showing off the feature that gives this guy his name.  In this image you can see clearly the internal structure and the striated texture of his muscular, gelatinous body.  Lobate ctenophores swim lobes forwards by beating the ciliated comb rows situated on the opposite (aboral) end.  The one depicted here would be swimming towards us and to the left.  I wonder if larvacean is on the menu?

Chaetognath — #Arrowworm

http://talk.planktonportal.org/#/subjects/APK0000hpr

51d1bd8d3ae74008a4006758

Looks like an arrow shot by some undersea archer, right?  Arrow worms, or chaetognaths, are carnivorous marine worms belonging to the Phylum Chaetognatha.  They are notoriously ferocious predators that hunt other plankton with the help of hooked ‘grasping spines’ that flank the mouth.  Chaetognaths have fins for propulsion and steering—you can see all of them really well in this capture!  While these fins superficially resemble those of a fish, they are not related evolutionary and are structurally very different.

Calycophoran Siphonophore — #Rocketship #Triangle

http://talk.planktonportal.org/#/subjects/APK0000k4m

51d1bd903ae74008a40073a5

I bet NASA would get a lot more funding if they built space shuttles that looked like this!  This beautiful capture of a siphonophore really looks to me like some sci-fi monster a (horrified) astronomer might see in a telescope!  Don’t worry though, this guy is just a couple of cm’s long and probably couldn’t hurt you if he tried.  Just like the physonect siphonophore above, this guy is a colonial organism and would therefore be more appropriately referred to as guys.  The tail, or stem, on display here contains two developmental stages of siphonophore simultaneously—both the medusa and polyp stages.  Unlike most cnidarians that alternate between these stages generationally, this guy chooses to have them coexist within the same colony.  If you look closely you can see them bickering over who is the prettiest!

Calanoid Copepod — #Copepod

http://talk.planktonportal.org/#/subjects/APK00005l6

51d1bd843ae74008a4001c98

This copepod is making a heart with his antennae! Do you think he might be in love?  There is some 13,000 species of copepod in the world and they are a crucial component of plankton communities and global ecology in general.  It has been suggested that copepods may comprise the largest animal biomass on the planet! Many species of marine life, large and small, rely on these guys as their main food source, including whales and seabirds.  Looks like this guy here is a lover not a fighter!

Looking forward to next time !

Fantastic Finds Fridays: Week 2! #FFF

We are at the end of week 2 and we pulled out some of the best finds from this past week. As a reminder, every Friday we will post a selection of Fantastic Finds. If you think you have found something really great on Plankton Portal then tag #FFF and we will check it out for use on the blog. Thanks for tagging your favorites this week!

51d1bda03ae74008a4010740

Larval fish
http://talk.planktonportal.org/#/subjects/APK00015nq

Larval fish are actually considered part of the plankton, as fish in their early life stages will drift along in the oceanic environment. Because larval fish are relatively poor swimmers, they are under high predation pressure and more than 99% of baby fish that hatch from eggs will not make it! It’s a tough life. You might not know it from this site, but studying larval fish is a major component of our lab. Dr. Cowen has spent his career studying larval fish, their distributions, dispersal and population connectivity. In this particular study, we did not sample very many larval fish so we did not include it as one of the categories. However, we are incredibly interested whenever we see one so definitely tag the fish in the forum when you see any! #Larval #fish

51d1bd943ae74008a4009b1e

Liriope tetraphylla (#Medusae #4tentacles) with Arrow worm
http://talk.planktonportal.org/#/subjects/APK0000q5x

This is one of my favorite pictures from this week because what you see Liriope tetraphylla actually eating the arrow worm! Here one of his tentacles has brought up the arrow worm into the gastric peduncle (that’s the long thin appendage in the middle of the umbrella that looks like a handle). He appears to be holding the arrow worm in place while he eats his dinner. As far as I know, the only scientific study of what Liriope eats is from a paper by Larry Madin in 1988, published in the Bulletin of Marine Science, where he found that Liriope eats larvaceans, crustacean larvae, heteropods and juvenile fish. No one has reported that Liriope also eats arrow worms … until now.

51d1bd823ae74008a4000c10

Sphaeronectes koellikeri – #rocketship #thimble
http://talk.planktonportal.org/#/subjects/APK00002cl

This beautiful creature falls within the broad group of jellyfish-relatives called the Siphonophores. Here you see this animal in a stunning feeding display. Though these guys are small and relatively inconspicuous, other siphonophores can get up to hundreds of feet long, and as a group are considered the deadliest predators in the ocean.  One fun fact: these rocketship siphonophores grow from the base of the stem towards the tail end. So the tail end of the stem is one of the oldest parts of the body. Sometimes you’ll even see small rocketships budding from the tail!

51d1bd833ae74008a4001258

Radiolarian colony – #radiolarian #colony
http://talk.planktonportal.org/#/subjects/APK00003kq

We know that you’ve been frustrated by those small fuzzy round objects that invite classification but really aren’t supposed to be classified. Those are protists, a diverse group of eukaryotic microorganisms. One type of protist is the radiolarian, which are known for their glass-like exoskeleton, or “tests.” They are incredibly important in marine science because their tests are made of silica, which are preserved in marine sediments after they die and sink to the bottom of the ocean, and provide a record for paleo-oceanographic conditions, such as temperature, water circulation, and overall climate.

Radiolarians also form colonies. Colonial radiolarians are interesting because first, little is known about them, despite their abundance in the open ocean, and secondly, they are hosts to symbiotic algae that are modest but significant primary producers in the ocean. It has also been suggested that we are vastly underestimating the abundance of radiolarian colonies. Since primary production (photosynthesis, the conversion of sun energy into carbon) is the basis upon which all ocean life can exist, it’s incredibly important to understand who all the different primary producers are and how many of them are out there!

 

That’s all, folks. Thanks for reading, thanks for classifying, and remember: mark your favorites with #FFF for next week’s Fantastic Finds Friday!

Fantastic Find Fridays! #FFF

Today we wanted to share with you a few of the amazing critters found by the Plankton Portal Citizen Scientists! There have been many thousands of zooplankton that have been identified in just the 3 days since launch and these are some of the best captures. Every Friday we will post a selection of Fantastic Finds. If you think you have found something really neat on the portal then tag #FFF and we will check it out for use on the blog. Now, to introduce some of the beautiful zooplankton found on Plankton Portal :

51d1bd833ae74008a4001666

Lilyopsis rosea –#Sipho #TwoCups

The siphonophore posing for the camera in this frame is a brilliant example of some of the intricate, alien and beautiful forms of life that have evolved within the open ocean. While this guy may resemble a single ‘jelly-fish’ superficially, siphonophores are actually colonial organisms with multiple specialized bodies functioning together. What teamwork!

51d1bd8a3ae74008a40049ff

Larvacean and Mucous House — #Larvacean #Larvaceanhouse

This is a great capture of a larvacean next to its elaborate and beautiful mucous house. Larvaceans are part of the Tunicate subphyla and are therefore chordates, not invertebrates like many of the zooplankton critters encountered by ISIIS. Larvaceans draw particulate matter into their mucous house by beating their tadpole-like bodies. They are known to create, discard, and remake a number of houses within the span of a single day! These houses not only help the larvacean collect food but also play an important role in the Carbon cycle as it has been recently discovered that discarded house export a significant amount of organic matter to depth.

51d1bda33ae74008a4012455

Thalassocalyce inconstans — #Thalasso

This dome-shaped critter may resemble a medusa but is in actuality a Comb Jelly, or Ctenophore. Thalassocalyce feeds on other zooplankton by spreading their body wide open to collect prey and contracting the bell closed as the unlucky plankton approaches the ctenophores mouth. Looks like this guy is on the hunt!

51d1bd833ae74008a400159e

Asexual Doliolid ‘Nurse’ — #DoliolidwithTail

Doliolids are a fascinating order of marine Tunicates with a complex life cycle that alternates between sexual and asexual generations. The beautiful guy captured in this frame will produce a huge number of asexually grown progeny that will bud off from the tail, or stalk, on display here. The barrel-shaped body of this guy here contains two siphons that facilitate filter-feeding of the matter suspended in the water column.

51d1bda23ae74008a4011531

Cestid Ctenophore — #Cestida

The ribbon-like critter in this image represents a very unique group of Ctenophore, or Comb Jelly. On display here are many of the features that define these zooplankters. Along the ‘top’ edge of this Cestida, you can see the comb row, a group of cilia that it uses for feeding. The mouth is seen here as an apparent crease across the middle of the organism and faces away from the comb rows. Maybe some lucky Citizen Scientist will find the other half of this guy!

We hope this has been a fun and informative introduction to a few of the many beautiful critters that ISIIS has shown us! Looking forward to the next Fantastic Find Fridays