Leptocephalus larvae

Some of the most beautiful and conspicuous animals we encounter in the plankton images are leptocephalus larvae. Eels, bonefish, ladyfish, and tarpon form a diverse superorder of fishes (Elopomorpha) that all begin their planktonic lives as leptocephalus larvae, which are characterized by long and laterally compressed bodies that are almost completely transparent. This type of larva is known by scientists to be relatively primitive, meaning that leptocephalus larval forms have been utilized by fishes for millions of years – probably since the Cretaceous period.

In this image, the you can see the backbone and the myomeres along the body. On the left side, the mouth of this larva is open.

Tarpon and bonefish larvae are slightly modified from the classic leptocephalus form. Unlike the eel leptocephali, tarpon and bonefish larvae are thinner vertically and have a well-developed caudal fin, which they use to swim.

Partial image of the tail region of a tarpon, bonefish, or ladyfish.

Most leptocephalus larvae (sometimes referred to as “leptos”) have a large set of teeth that protrude outward. For a long time, the diet of leptos was a complete mystery because their guts appeared to be empty. We now know that they rely on particulate matter, also known as “marine snow”, as their primary food source (Miller et al. 2013). Our in situ imaging work has revealed that leptos are quite abundant, particularly in the northern Gulf of Mexico, and have a variety of complex behaviors that may help them survive in a realm of intense predation pressure. We recently published a paper presenting evidence that the morphology of these leptos indicates that they likely serve as Batesian mimics of cestid ctenophores, which are strikingly similar in appearance (Greer et al. 2016). By resembling an animal with low nutritional value that predators avoid (the cestid ctenophore), the leptos gain protection from predators. The only perceivable morphological difference is that leptos have a head and a dark backbone with myomeres (muscle strands) that are visible when viewed through a shadowgraph imager, while cestid ctenophores lack these features. For a fish predator relying on vision in a complex ocean light environment, it may not be able to tell the difference, which could explain why predation rates on leptos are much lower than expected (Miller et al. 2015).

Cestid ctenophore

Leptocephalus larva – note the similarity in morphology to the cestid ctenophore above.

Leptos display complex behaviors that can make them difficult to identify in the images (and likely has a similar effect on predators). This one is curled up. The main cues that this is indeed a lepto are the visible myomeres, and the head and tail are meeting on the left and right sides of the body, respectively.

Leptocephalus larvae are fascinating, and we are just beginning to unlock some of the secrets of their biology and ecology through imaging. By combining the data produced from imaging them in their natural environment with other techniques to assess diets and predation pressure, we hope to learn more about these animals and what processes impact their survival during their time in the plankton. After all, some of these leptos eventually grow up to do this:

Source: tampayacht.com


Greer AT, Woodson CB, Guigand CM, Cowen RK (2016) Larval fishes utilize Batesian mimicry as a survival strategy in the plankton. Mar Ecol Prog Ser 551:1-12

Miller MJ, Chikaraishi Y, Ogawa NO, Yamada Y, Tsukamoto K, Ohkouchi N (2013) A low trophic position of Japanese eel larvae indicates feeding on marine snow. Biol Lett 9:20120826

Miller MJ, Dubosc J, Vourey E, Tsukamoto K, Allain V (2015) Low occurrence rates of ubiquitously present leptocephalus larvae in the stomach contents of predatory fish. ICES J Mar Sci 72:1359-1369

What’s it like in a thin layer?

During the CONCORDE summer field sampling campaign, we had the good fortune of towing the ISIIS through a unique oceanographic feature called a “thin layer.” Thin layers are dense aggregations of phytoplankton or zooplankton that have a vertical dimension of less than 3 meters and have concentrations of at least 2-3 times the water column average abundance. They can span hundreds of meters to several kilometers in the horizontal dimension. This series of images shows how the plankton concentrations dramatically change from just underneath to above the thin layer. The hairlike objects are phytoplankton called diatoms, but there are also lots of zooplankton in the vicinity of the layer. Here you can see the barrel shaped doliolids, which are grazers of phytoplankton, as well as copepods and chaetognaths.

Image taken just below the thin layer

Image taken just below the thin layer

Within the thin layer

Just above the thin layer

Just above the thin layer you can see lots of marine snow particles and a chaetognath.

Further above the thin layer, the plankton concentrations are not as intense.

Further above the thin layer, the plankton concentrations are not as intense.

Keep in mind that all of these images were taken within a few meters of each other. It is amazing to see firsthand how dramatically the ocean environment can change, and how these organisms respond this variability. Is this something they normally experience? The next steps are to use the image data to quantify the changes in abundances and look at the different mechanisms that may have caused this thin layer to form.

Stomatopods: amazing eyes

The more I learn about stomatopods (also known as “mantis shrimps”), the more fascinated I become with these true marvels of evolution. From the image data we have processed so far from the CONCORDE fall and spring field campaigns, it is pretty clear that stomatopod larvae were quite abundant in the nearshore waters of the northern Gulf of Mexico. As you can see from the images below, they are really cool looking animals – even Hollywood took notice, as stomatopods served as the inspiration behind the alien queen in the movie “Alien.”

Stomatopod larvae imaged in the northern Gulf of Mexico on October 30, 2015

Stomatopod larvae imaged in the northern Gulf of Mexico on October 30, 2015

The first thing you notice when you see the images of the larvae are those giant stalked eyes protruding from their heads. The eyes, which appear to be well developed in the larvae, are one of the most remarkable adaptations of the adult stomatopod. Unlike mammals and cephalopods, which have a camera like eye (single lens projecting an image onto a retina), stomatopods have a highly specialized compound eye, and each eye often moves independently from the other. They also have 12 visual pigments, giving them a huge range of detectable wavelengths, from infra-red to ultraviolet – much more than other invertebrates (Land & Nilsson 2012). In comaprison, humans only have three visual pigments (red, green, and blue), and the stomatopods can even detect different types of polarized light. Have you ever heard of circular polarized light? Well, they can see that too! The males have certain parts of the body can reflect circular polarized light in both right and left hand directions. The band across each eye has 4 rows of ommatidia that can see in color, and two rows (one on each end) detect polarized light (Chiou et al. 2008).

Image source: http://www.abc.net.au/catalyst/stories/3280489.htm

Image source: http://www.abc.net.au/catalyst/stories/3280489.htm Also, check out the interview with Dr. Justin Marshall who has been studying mantis shrimps for almost 20 years

Another impressive thing about stomatopods is their method of capturing prey. Different species of stomatopods use one of two different attack methods: smashing and spearing. You can tell what method it uses based on the morphology of the stomatopod appendages. The smashers have clubbed appendages that they flick outwards to smash their prey, and the spearers have pointy appendages that they can use to puncture their prey. The force created by these attacks is extremely powerful for their size. In fact, the movement of the appendages is so quick that it generates a large cavitation bubble. The phenomenon of cavitation happens when something in the water moves so fast that an empty space is created that the water cannot fill quickly enough. When a boat propeller rotates at a fast rate, it generates tiny cavitation bubbles. It is quite rare for an animal as small as the stomatopod to generate enough force to cause cavitation.


Chiou T-H, Kleinlogel S, Cronin T, Caldwell R, Loeffler B, Siddiqi A, Goldizen A, Marshall J (2008) Circular polarization vision in a stomatopod crustacean. Current Biology 18:429-434

Land MF and Nilsson D-E (2012) Animal Eyes (2nd ed.) Oxford University Press

Images from the first leg

Things are going well onboard the R/V Point Sur as we finish up the first leg of the CONCORDE fall research expedition (www.con-corde.org). Although the water column has been well mixed from the recent windy conditions, we are seeing a lot of structure with regards to the biology. As we move along the transects, we see distinct changes in the plankton community. Here are just a few examples of the types of organisms we are seeing.


This looks like something out of an alien movie, but it actually a stomatopod larva. Stomatopods are also known as mantis shrimps and, like many ocean animals, have egg and larval stages in the plankton. Adult stomatopods can give one of the most powerful strikes of any animal for its size. They use their club-like appendages seen in the image to bash their prey, stunning or killing it before consumption. Stomatopods, with their large compound eyes, also have some of the best visual acuity for any invertebrate.


Today we also found this larval squid (~1 cm in size). It was imaged right next to two similarly sized squid larvae, so we can only assume that they were spawned from the same parents or spawning event (i.e., they are members of the same cohort). Many larval animals may aggregate in this fashion to protect themselves from predators. Even though aggregating together may not reduce each individual’s chance of encountering a predator, the schooling behavior probably has a benefit because predators may become confused by the many potential targets in close proximity.


This last image is one that is truly exceptional. It shows a large scyphomedusa (jellyfish) that covers almost the entire image. The field of view on the ISIIS is about 13 cm, and we can estimate that this individual is at least twice that size. It is likely a moon jelly (Aurelia spp.), but the most remarkable thing are the fish larvae aggregating underneath it. We can see four larvae that appear to be jacks or butterfish that seem to be using the moon jelly for shelter or protection. Jellyfish are often thought of as predators of fish larvae, but images like this one show that that interpretation may be a bit simplistic. A few types of fish larvae are known to use jellyfish for protection because some larval fish predators avoid eating jellyfish due to their stinging nematocysts and low nutritional value. It is extremely rare to document this kind of behavior, especially the large number of larvae aggregating under one moon jelly.

Plankton Imaging Cruise in the Gulf of Mexico

Recently the University of Southern Mississippi purchased a brand new In Situ Ichthyoplankton Imaging System (ISIIS) for use as part of a research consortium known as CONCORDE (www.con-corde.org). The goal of the consortium, which involves many different universities and governmental organizations, is to better understand potential physical and biological pathways of oil in river-dominated coastal ecosystems, such as the northern Gulf of Mexico.

USM researcher Kevin Martin helps to lower the ISIIS onto the Pt. Sur

USM researcher Kevin Martin helps to lower the ISIIS onto the Pt. Sur

In order to better understand the ecosystem, we must first get an idea of how the different planktonic organisms are distributed in time and space. The ISIIS is a good tool to do this because it will ultimately provide a high resolution spatial map of different plankton taxa, which can be used to complement many avenues of oceanographic research. Currently, we are aboard the R/V Point Sur, deploying the imaging system in the nearshore environment, identifying and mapping the different types of plankton in the highly productive northern Gulf of Mexico. Because the weather has and continues to be quite windy, we are generally seeing a well mixed water column, but there still a great amount of biological diversity. Throughout the course of the research expedition, we will post updates of the different organisms being found. Here is one image of a phyllosoma larva, which is the larval form of lobsters. This is possibly a slipper lobster, which is known to have a larval stage of over 9 months! These organisms must undergo incredibly long and dangerous ocean journeys in their first few months of life, as they traverse the coastal waters that are full of predators. We were lucky enough to come across this one:

Phyllosoma larva are almost completely transparent and have remarkably long larval stages

Phyllosoma larvae are almost completely transparent and have remarkably long larval stages. This one is only ~2 cm long but could eventually develop into an adult lobster if it survives the perilous journey in the plankton.

For more updates on the research being done on the Point Sur, please follow Heather Dippold’s CONCORDE blog at www.con-corde.org/blog. There you can see information about the different instruments and people involved in studying various aspects of oceanography in the Gulf of Mexico. Also, stay tuned here to see different types of plankton we are finding in the images!

Announcing Plankton Portal 2.0!

There is a new dataset on PlanktonPortal!

In summer 2013, a group from the original science team behind PlanktonPortal (Bob Cowen, Cédric Guigand, and Jessica Luo) teamed up with French colleagues (Jean-Olivier Irisson, Robin Faillettaz and other members of the Laboratoire d’Océanographie de Villefranche) through a Partner University Fund-sponsored project. We roamed the Mediterranean sea, equipped with ISIIS, the instrument which takes the images seen on PlanktonPortal, and a collection of other sensors. Our aim was to understand how physical discontinuities in the ocean (such as the strong coastal current along the French Riviera) influence the plankton. These discontinuities often create conditions in which plankton thrives and this has important consequences down the rest of the food chain.


Bob, and Jean-Olivier (in the background), ready to load ISIIS on the Tethys II oceanographic ship in Nice’s harbour


Cédric setting his baby up with the crew of the NO Tethys II

After a rocky start (see our project blog), we eventually managed to get almost five full days of sampling. Five days; it seems short. And ISIIS was actually acquiring data of scientific interest during only 93 h within those five days. That is 3.8 full days, which seems even shorter. But that amounts to about 17.5TB of data (terabytes, as in 1024 gigabytes). In terms of images, that represents 19 trillion pixels, which could be divided into 34 million PlanktonPortal frames. So, clearly, we need your help!

We actually spent much of the last two years processing the images and classifying organisms in a small fraction of them, to be able to filter out most frames with no organisms using computer algorithms. Now we are ready. Ready with a few hundred thousands frames from the last two days of the cruise that no one has seen before and in which you can help us identify plankton.


ISIIS in font of a Mediterranean sunset

Appendicularians – putting mucus to good use

Appendicularians (also known as larvaceans) are unique animals that resemble tadpoles in shape. Unlike tadpoles, however, they do not metamorphose into a different form, but spend their entire lives as part of the zooplankton. Many marine animals use mucus for various purposes, but for appendicularians, mucus is necessary for them to feed and survive. They use mucus to build an intricate “house” that has a tunnel through the middle. The appendicularian beats its strong tail to create a current through the house, and the house collects the food particles in the water. It really is a special thing to be able to see an appendicularian inside of its house because most collection techniques destroy these houses. Even when someone does have access to an intact appendicularian house, it can be extremely difficult to view under a microscope, as documented here.

Appendicularians use a create a feeding current to filter food particles from the surrounding water. Source: http://www.microscopy-uk.org.uk/mag/indexmag.html?http://www.microscopy-uk.org.uk/mag/artjan01/oiko.html

Appendicularians create a feeding current to filter food particles from the surrounding water. The dotted arrows indicate the direction of the current through the house.
Source: http://www.microscopy-uk.org.uk/mag/indexmag.html?http://www.microscopy-uk.org.uk/mag/artjan01/oiko.html

If the housed appendicularian encounters waters that have food concentrations that are too high, the filter will clog, and the appendicularian must abandon its house. In order to keep feeding, it has to start from scratch and build a new house. Most appendicularians are thought to abandon and build several houses per day. For this reason, you see appendicularians in the ISIIS images that look as if they have no house (likely in the process of building a new one) or have fully formed mucous houses. Oftentimes you will see abandoned houses that appear slightly degraded, drifting slowly through the water column. Scientists think that these abandoned houses, which stick to all sorts of different particles causing them to increase in size and sinking speed, make up a large portion of organic material sinking through the water column (known as “marine snow”).

This appendicularian has a house that appears to be accumulating many particle on the outside. It will likely abandon this one soon and start building a new house.

This appendicularian has a house that appears to be accumulating many particles on the outside. It will likely abandon this one soon and start building a new house.


The faded mucous material below this copepod is what remains of an appendicularian house. Other zooplankton might scavenge the food particles that collect on abandoned mucous houses as they sink into the deep ocean.

Not only are appendicularians responsible for creating marine snow that exports carbon to deeper waters, but they are also important food sources for the early life stages of some commercially important fishes. In fact, research in the Cowen Lab demonstrated that many tropical tunas (little tunny, yellowfin tuna, skipjack tuna, etc.) feed almost exclusively on appendicularians as larvae, before beginning to consume other larval fishes once they reach a certain size (Llopiz et al. 2010).

Many people also also surprised to learn that humans and appendicularians are classified under the same phylum (Chordata). This means that a few hundred million years ago, there was an animal living in the ocean that became the first organism to have a notochord as part of its developmental process. This ancestor gave rise to the fishes, which proliferated during the Devonian, and later all other animals that have backbones. Humans, modern reptiles, and appendicularians are all different end points on the tree of life that emerged from this common ancestor.


Llopiz, J.K., Richardson, D.E., Shiroza, A., Smith, S.L., Cowen, R.K.,2010. Distinctions in the diets and distributions of larval tunas and the important role of appendicularians. Limnol. Oceanogr. 55, 983-996.

OSTRICH cruise leg 2 almost done!

We have been zigzagging up and down the Florida Straits for the last two weeks. This photo, from two days ago, shows our ship track (in blue) and drifter track (in red).

RV Walton Smith Tracks

Our first study was the Spatial Study, where we deployed a drifter at the beginning of the day, and then followed it, sampling with ISIIS and MOCNESS in a zig-zag track for the whole day. We started our cruise sampling near Miami and Bimini, Bahamas, and finished up the Spatial Study in the FL Keys.

Photo by Cedric Guigand, taken with a Phantom DJI drone

Research Vessel F.G. Walton Smith during the OSTRICH Cruise, June 2014. Photo by Cedric Guigand, taken with a Phantom DJI drone.


In the second leg of our cruise (which concludes tonight), we have been sampling in the Lagrangian Study, which lasted a total of 4 days. We deployed a drifter in the Lower Keys at the beginning of the study and have been following it continuously, sampling with ISIIS and MOCNESS.

The idea is that by following a drifter, we will be continuously sampling the same body of water. Consider this analogy: you are sampling a fast moving stream. If you stand at a fixed point on land and continuously sample, you sample different parts of the stream because it is constantly flowing in front of you. However, if you build a raft and float down the stream with it, sampling along the way, then you are actually sampling the same part of the stream at different points in time. The latter case is what we are doing. The Gulf Stream / Florida Current is our fast moving “stream” and we are drifting with the stream in a fancy raft, sampling along the way.

R/V F.G. Walton Smith, aerial view of the back deck, with ISIIS on board. Photo by Cedric Guigand

Continue following our updates on the ISIIS Facebook page as we conclude our 18-day cruise this week.

ISIIS in the field: OSTRICH cruise in progress

Hi Plankton Portal!

The Science Team is currently out in the field in the Straits of Florida, on the R/V Walton Smith, sampling with both ISIIS and MOCNESS (Multiple Opening Closing Net and Environmental Sampling System), on an 18-day cruise titled OSTRICH (Observations on Subtropical TRophodynamics of ICHthyoplankton).


The overall goal of this NSF-sponsored project is to quantify the patterns and consequences of the fine-scale to sub-mesoscale distributions of larval fishes, their prey, and their predators near and across a major western boundary current passing through the Straits of Florida. By sampling a series of water masses at very high resolution, this study addresses specific hypotheses concerning: i) the drivers of aggregations and patchiness, and ii) the biological consequences of predator-prey interactions at fine scales.

postdoc ad sample images

Sample ISIIS images showing diversity of plankton from multiple coastal sites (including the Southern California Bight!)

Sampling involves a novel combination of detailed in situ sampling of the horizontal and vertical distributions of plankton, targeted fine-scale net sampling, and analyses of individual-level recent daily larval growth to enable the identification of the biological and physical processes driving fine-scale plankton distributions.

Follow along on the ISIIS facebook page as we periodically post updates (via our terrible internet connection at sea!) and also check out this cool video made by one of our cruise participants, Chris Muiña:



Plankton blooms: Causes and Consequences

As organisms that cannot swim against the currents, plankton are intimately connected to their physical environment. Many species are quite sensitive to the temperature, salinity, and nutrient levels that either lead to their proliferation or demise. Physical conditions and nutrient levels can lead to high abundances of particular plankton types. These plankton “blooms” are common throughout the world’s oceans and can be composed of phytoplankton, zooplankton, or gelatinous zooplankton, depending on the environmental conditions.

Generally phytoplankton (plankton that use photosynthesis like plants) need nutrients and light to grow at very high rates. Since light is readily available in the surface ocean, nutrient availability is the most important driver of phytoplankton blooms. Phytoplankton blooms of most concern to environmental monitoring groups are often described as Harmful Algal Blooms (HABs). Some HABs composed of diatom species Pseudo-nitzschia spp. or the dinoflagellate Karenia brevis can produce toxins harmful to copepods, fish, and higher trophic levels like dolphins and humans. “Red tides” are actually blooms of Karenia brevis that sometimes lead to massive fish dieoffs. Other phytoplankton blooms are harmful not because of the toxins that they produce, but because of the processes that happen when the blooms die off: massive amounts of phytoplankton die and sink to the bottom where they are decomposed by bacteria. These bacteria use oxygen to consume the dead phytoplankton, creating large portions of the water column that are low in oxygen. Fishes and some zooplankton avoid these low oxygen zones, but gelatinous zooplankton seem to be able to withstand low oxygen conditions. These low oxygen regions are often referred to as “dead zones” because very few animals can live there. A dead zone occurs regularly in the summertime in the northern Gulf of Mexico and has been expanding in recent years. Reducing nutrient/fertilizer runoff from farmlands and cities is therefore crucial to limiting the growth of phytoplankton and maintaining healthy coastal ecosystems.

A bloom of Karenia brevis viewed from the air. This "crimson tide" is only composed of small dinoflagellates, but it can have devastating consequences for a coastal ecosystem. Source: http://microbewiki.kenyon.edu/index.php/File:Red_tide_genera.jpeg

A bloom of Karenia brevis viewed from the air. This “crimson tide” is only composed of small dinoflagellates, but it can have devastating consequences for a coastal ecosystem.

Blooms of zooplankton can form via two different mechanisms 1) currents from different water masses merge to create a dense patch of organisms, or 2) consistently favorable conditions allow the zooplankton to reproduce faster than their predators can consume them. These two mechanisms are distinguished in the scientific literature as “apparent blooms” and “true blooms” (Graham et al. 2001). Apparent blooms can result from converging currents such as fronts, or the behavior of zooplankton aggregating along some kind of physical discontinuity, such as a thermocline. True blooms are typically the result of high food concentrations, high survival of larvae/juveniles, or a combination of multiple factors. For scientists, it is sometimes difficult to know what mechanism led to a zooplankton bloom, and they need to consider the history of the water masses where the zooplankton are found to figure out how the bloom formed (Greer et al. 2013). Zooplankton blooms associated with copepods are generally considered to be healthy for the ecosystem. The timing of copepod peak abundances with the first feeding of larval fishes is thought to be an important factor contributing to the variation in fish population abundances (Cushing 1975). Blooms of jellyfish, on the other hand, are often associated with ecosystems that are environmentally degraded through high nutrient input or consistent overfishing (Jackson et al. 2001), but there are some scientists who think jelly blooms are simply a characteristic of their life histories (Condon et al. 2013). More data on jellyfish abundances over longer time periods will help scientists understand relationships between the environment and the frequency of jellyfish blooms. You can also report jellyfish sightings at http://www.jellywatch.org.

Here is avideo of one ISIIS downcast through the water column of near a frontal feature offshore of San Diego, CA, USA. It shows a bloom of Solmaris spp. jellies concentrated near the surface. Convergent currents that are commonly seen at fronts likely contributed to the formation of this bloom.


Condon RH, Duarte CM, Pitt KA, Robinson KL, Lucas CH, Sutherland KR, Mianzan HW, Bogeberg M, Purcell JE, Decker MB, and others (2013) Recurrent jellyfish blooms are a consequence of global oscillations. Proc Natl Acad Sci U S A 110:1000-1005

Cushing DH (1975) Marine ecology and fisheries. Cambridge University Press, London

Graham WM, Pagès F, Hamner WM (2001) A physical context for gelatinous zooplankton aggregations: A review. Hydrobiologia 451:199-212

Greer AT, Cowen RK, Guigand CM, McManus MA, Sevadjian JC, Timmerman AHV (2013) Relationships between phytoplankton thin layers and the fine-scale vertical distributions of two trophic levels of zooplankton. Journal of Plankton Research 35:939-956

Jackson JBC, Kirby MX, Berger WH, Bjorndal KA, Botsford LW, Bourque BJ, Bradbury RH, Cooke R, Erlandson J, Estes JA, and others (2001) Historical overfishing and the recent collapse of coastal ecosystems. Science 293:629-637